47 research outputs found

    Using Markov Models to Characterize and Predict Process Target Compliance

    Get PDF
    Processes are everywhere, covering disparate fields such as business, industry, telecommunications, and healthcare. They have previously been analyzed and modelled with the aim of improving understanding and efficiency as well as predicting future events and outcomes. In recent years, process mining has appeared with the aim of uncovering, observing, and improving processes, often based on data obtained from logs. This typically requires task identification, predicting future pathways, or identifying anomalies. We here concentrate on using Markov processes to assess compliance with completion targets or, inversely, we can determine appropriate targets for satisfactory performance. Previous work is extended to processes where there are a number of possible exit options, with potentially different target completion times. In particular, we look at distributions of the number of patients failing to meet targets, through time. The formulae are illustrated using data from a stroke patient unit, where there are multiple discharge destinations for patients, namely death, private nursing home, or the patient’s own home, where different discharge destinations may require disparate targets. Key performance indicators (KPIs) of this sort are commonplace in healthcare, business, and industrial processes. Markov models, or their extensions, have an important role to play in this work where the approach can be extended to include more expressive assumptions, with the aim of assessing compliance in complex scenarios

    Dual contextual module for neural machine translation

    Get PDF

    Gated Task Interaction Framework for Multi-task Sequence Tagging

    Get PDF
    Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the character-level and the word embedding vectors as inputs. Others have shown that linguistic features can improve the performance of neural models on tasks such as chunking and named entity recognition (NER). However, the change in performance depends on the degree of semantic relatedness between the linguistic features and the target task; in some instances, linguistic features can have a negative impact on performance. This paper presents an approach to jointly learn these linguistic features along with the target sequence labelling tasks with a new multi-task learning (MTL) framework called Gated Tasks Interaction (GTI) network for solving multiple sequence tagging tasks. The GTI network exploits the relations between the multiple tasks via neural gate modules. These gate modules control the flow of information between the different tasks. Experiments on benchmark datasets for chunking and NER show that our framework outperforms other competitive baselines trained with and without external training resources.Comment: 8 page

    Fusing Thermopile Infrared Sensor Data for Single Component Activity Recognition within a Smart Environment

    Get PDF
    To provide accurate activity recognition within a smart environment, visible spectrum cameras can be used as data capture devices in solution applications. Privacy, however, is a significant concern with regards to monitoring in a smart environment, particularly with visible spectrum cameras. Their use, therefore, may not be ideal. The need for accurate activity recognition is still required and so an unobtrusive approach is addressed in this research highlighting the use of a thermopile infrared sensor as the sole means of data collection. Image frames of the monitored scene are acquired from a thermopile infrared sensor that only highlights sources of heat, for example, a person. The recorded frames feature no discernable characteristics of people; hence privacy concerns can successfully be alleviated. To demonstrate how thermopile infrared sensors can be used for this task, an experiment was conducted to capture almost 600 thermal frames of a person performing four single component activities. The person’s position within a room, along with the action being performed, is used to appropriately predict the activity. The results demonstrated that high accuracy levels, 91.47%, for activity recognition can be obtained using only thermopile infrared sensors

    Protection of Records and Data Authentication based on Secret Shares and Watermarking

    Get PDF
    The rapid growth in communication technology facilitates the health industry in many aspects from transmission of sensor’s data to real-time diagnosis using cloud-based frameworks. However, the secure transmission of data and its authenticity become a challenging task, especially, for health-related applications. The medical information must be accessible to only the relevant healthcare staff to avoid any unfortunate circumstances for the patient as well as for the healthcare providers. Therefore, a method to protect the identity of a patient and authentication of transmitted data is proposed in this study. The proposed method provides dual protection. First, it encrypts the identity using Shamir’s secret sharing scheme without the increase in dimension of the original identity. Second, the identity is watermarked using zero-watermarking to avoid any distortion into the host signal. The experimental results show that the proposed method encrypts, embeds and extracts identities reliably. Moreover, in case of malicious attack, the method distorts the embedded identity which provides a clear indication of fabrication. An automatic disorder detection system using Mel-frequency cepstral coefficients and Gaussian mixture model is also implemented which concludes that malicious attacks greatly impact on the accurate diagnosis of disorders

    On the Study of Sustainability and Outage of SWIPT-Enabled Wireless Communications

    Get PDF
    Wireless power transfer technologies such as simultaneous wireless information and power transfer (SWIPT) have shown significant potential to revolutionise the design of future wireless communication systems. When the only energy source is from the wireless signals that are mainly intended for information communications, the sustainability and outage performance of SWIPT systems become critical factors in theoretical evaluation and practical applications. This paper firstly models the energy harvesting and energy consumption of the power splitting protocol based SWIPT systems to investigate the general sustainability condition. We further model the power and information transfer outage probabilities using Markov Chains, which are unique for SWIPT systems since they both could cause communication outage. We further demonstrate how to apply the closed-form expression of the outage to optimise the key parameter of splitting ratio for SWIPT systems. Hardware and numerical experiments demonstrate the validity of the proposed model and outage analysis, and confirm the effectiveness of the solution to calculate the optimal splitting ratios under different signal and channel conditions
    corecore